Procurement Fraud Discovery using Similarity Measure Learning
نویسندگان
چکیده
This paper describes an approach to detect risks of procurement fraud. It was developed within the context of a European Union project on fraud prevention. Procurement fraud is a special kind of fraud that occurs when employees cheat on their own employers by executing or triggering bogus payments. The approach presented here is based on the idea to learn a similarity measure that compares an employee (or payroll) standing-data record to a creditor record, in order to detect creditors that are suspiciously similar to employees. To this ends, it combines several simple similarity measures like address similarity or spatial similarity using a weighting scheme. The weights, that is the overall similarity function, are learned from user input specifying whether a particular pair of payroll and creditor data records are similar. This leads to an adaptive, easily transferable approach for a generic class of fraud opportunities.
منابع مشابه
Robust System for Identifying Procurement Fraud
An accredited biennial 2012 study by the Association of Certified Fraud Examiners claims that on average 5% of a company’s revenue is lost because of unchecked fraud every year. The reason for such heavy losses are that it takes around 18 months for a fraud to be caught and audits catch only 3% of the actual fraud. This begs the need for better tools and processes to be able to quickly and chea...
متن کاملFraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms
The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملImproving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملWeb Service Clustering using a Hybrid Term-Similarity Measure with Ontology Learning
Clustering Web services into functionally similar clusters is a very efficient approach to service discovery. A principal issue for clustering is computing the semantic similarity between services. Current approaches use similarity-distance measurement methods such as keyword, information-retrieval or ontology based methods. These approaches have problems that include discovering semantic chara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tran. CBR
دوره 1 شماره
صفحات -
تاریخ انتشار 2008